[go: up one dir, main page]

login
A200679 revision #7

A200679
Decimal expansion of the lesser of two values of x satisfying 2*x^2 = tan(x) and 0 < x < Pi/2.
3
5, 5, 9, 7, 0, 4, 1, 5, 2, 2, 7, 3, 0, 8, 0, 6, 5, 0, 6, 1, 0, 3, 7, 7, 2, 1, 2, 8, 3, 5, 8, 8, 0, 2, 2, 9, 6, 9, 7, 4, 6, 8, 1, 6, 7, 1, 2, 6, 5, 9, 3, 6, 9, 3, 1, 3, 4, 8, 7, 3, 7, 8, 2, 6, 9, 0, 2, 3, 0, 0, 6, 6, 4, 1, 2, 7, 2, 9, 0, 3, 8, 0, 8, 3, 0, 1, 0, 8, 7, 4, 2, 3, 3, 0, 6, 4, 0, 2, 1
OFFSET
0,1
COMMENTS
See A200614 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
lesser: 0.55970415227308065061037721283588022...
greater: 1.27034264779958271106399033503202112...
MATHEMATICA
a = 2; c = 0;
f[x_] := a*x^2 - c; g[x_] := Tan[x]
Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
RealDigits[r] (* A200679 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110]
RealDigits[r] (* A200680 *)
CROSSREFS
Cf. A200614.
Sequence in context: A331502 A021951 A206772 * A124175 A168277 A163980
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 20 2011
STATUS
editing