[go: up one dir, main page]

login
A163827 revision #10

A163827
a(n)=6n^3+1, solution z in Diophantine equation x^3+y^3=z^3-2. It may be considered a Fermat near miss by 2.
1
7, 49, 163, 385, 751, 1297, 2059, 3073, 4375, 6001, 7987, 10369, 13183, 16465, 20251, 24577, 29479, 34993, 41155, 48001, 55567, 63889, 73003, 82945, 93751, 105457, 118099, 131713, 146335, 162001, 178747, 196609, 215623, 235825, 257251, 279937
OFFSET
1,1
COMMENTS
It is easy to check that with x=6n^2, y=6n^3-1, and this z=6n^3+1, it satisfies the Diophantine equation x^3+y^3=z^3-2. Thus these are near-misses for Fermat equation.
For n>2, it seems to be the only solution of x^n+y^n=z^n-2 (or even that differ by 2 from FLT, see A050787 and A050791 for solutions that differ by 1). As 2 is not a cube, these solutions are not included in the theory for x^3+y^3=u^3+v^3.
FORMULA
a(n)=6n^3+1.
a(1)=7, a(2)=49, a(3)=163, a(4)=385, a(n)=4*a(n-1)-6*a(n-2)+4*a(n-3)- a(n-4) [From Harvey P. Dale, Dec 12 2011]
G.f.: (-x^3+9*x^2+21*x+7)/(x-1)^4 [From Harvey P. Dale, Dec 12 2011]
EXAMPLE
For n=1, a(1)=7 and 7^3-2(=341)=5^3+6^3.
For n=2, a(2)=49 and 49^3-2(=117647)=24^3+47^3.
MATHEMATICA
6*Range[40]^3+1 (* or *) LinearRecurrence[{4, -6, 4, -1}, {7, 49, 163, 385}, 40] (* Harvey P. Dale, Dec 12 2011 *)
PROG
(PARI) a(n)=6*n^3+1 \\ Charles R Greathouse IV, Nov 29 2014
CROSSREFS
Sequence in context: A152777 A003530 A262269 * A206989 A221962 A373684
KEYWORD
nonn,easy
AUTHOR
Carlos Alves, Aug 05 2009
STATUS
editing