[go: up one dir, main page]

login
A142970 revision #39

A142970
Numerators of n-th approximants of a continued fraction for Pi-3.
5
0, 1, 6, 61, 660, 8901, 133266, 2303865, 43808040, 928665225, 21386693790, 537861526965, 14540730176700, 423407835413325, 13140639311294250, 434929825450371825, 15237733330856005200, 565064979900590948625, 22056613209702152061750, 905913636742121921038125
OFFSET
0,3
COMMENTS
The corresponding denominators are A001879(n), n >= 0.
Pi = 3 + 1^2/(6 + 3^2/(6 + 5^2/(6 + ... ))). See the J.-P. Delahaye reference. R. Rosenthal mentioned this continued fraction in an e-mail to the author Jul 16 2008.
For the approximants in lowest terms cf. the ones for 3*(Pi-3) given by A130411(n)/A130412(n) in lowest terms.
The above continued fraction for Pi is the particular case n = 0, x = 3 of a result of Ramanujan, previously given by Euler - see Berndt et al., Chapter 12, Entry 25, p. 268. - Peter Bala, Feb 19 2015
REFERENCES
J.-P. Delahaye, Le fascinant nombre pi, Pour la Science, Paris 1997. In German: Pi - die Story, Birkhäuser, 1999 Basel, p. 87.
LINKS
B. C. Berndt, R. L. Lamphere, and B. M. Wilson Chapter 12 of Ramanujan's second notebook: Continued fractions, Rocky Mountain Journal of Mathematics, Volume 15, Number 2 (1985), 235-310
L. Euler, De fractionibus continuis observationes, The Euler Archive, Index Number 123, Section 67.
L. J. Lange, An Elegant Continued Fraction for π, The American Mathematical Monthly, 106 (1999), 456-458.
FORMULA
a(n) = 6*a(n-1) + ((2*n-1)^2)*a(n-2), a(0)=0, a(1)=1.
E.g.f.: (-3*(1+x-sqrt(1-4*x^2))+ 2*(1+x)*arcsin(2*x))/(1-2*x)^(5/2) from the solution of the linear second order differential equation (1-4*x^2)*y''(x) - 2*(8*x+3)*y'(x) - 9*y(x)=0, obtained from the recurrence, with inputs y(0)=0 and y'(0)=1. A special solution is the e.g.f. of the denominators A001879: (1+x)/(1-2*x)^(5/2).
a(n) ~ (Pi-3) * 2^(n+3/2) * n^(n+2) / exp(n). - Vaclav Kotesovec, Oct 05 2013
EXAMPLE
Approximants a(n)/A001879(n) (not in lowest terms): [0/1]; [1/6]; [6/45]; [61/420]; [660/4725]; [8901/62370];..
Approximants in lowest terms: [0/1]; [1/6]; [2/15]; [61/420]; [44/315]; [989/6930]; ...
MATHEMATICA
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==6 a[n-1] + (2 n-1)^2 a[n-2]}, a, {n, 30}] (* Vincenzo Librandi, Feb 20 2015 *)
PROG
(MAGMA) I:=[1, 6]; [0] cat [n le 2 select I[n] else 6*Self(n-1)+(2*n-1)^2*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 20 2015
CROSSREFS
KEYWORD
nonn,easy,frac,cofr
AUTHOR
Wolfdieter Lang, Sep 15 2008
STATUS
approved