OFFSET
0,3
COMMENTS
Mathar's Table 1 (cited below) lists expansions of the prime zeta function at integers s in 10..39. - Jason Kimberley, Jan 07 2017
REFERENCES
Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
J. W. L. Glaisher, On the Sums of Inverse Powers of the Prime Numbers, Quart. J. Math. 25, 347-362, 1891.
LINKS
Jason Kimberley, Table of n, a(n) for n = 0..1802
Henri Cohen, High Precision Computation of Hardy-Littlewood Constants, Preprint, 1998.
Henri Cohen, High-precision computation of Hardy-Littlewood constants. [pdf copy, with permission]
X. Gourdon and P. Sebah, Some Constants from Number theory
R. J. Mathar, Series of reciprocal powers of k-almost primes, arXiv:0803.0900 [math.NT], 2008-2009. Table 1.
Eric Weisstein's World of Mathematics, Prime Zeta Function
FORMULA
P(6) = Sum_{p prime} 1/p^6 = Sum_{n>=1} mobius(n)*log(zeta(6*n))/n
Equals Sum_{k>=1} 1/A030516(k). - Amiram Eldar, Jul 27 2020
EXAMPLE
0.0170700868506365129541...
MAPLE
A085966:= proc(i) print(evalf(add(1/ithprime(k)^6, k=1..i), 100)); end:
A085966(100000); # Paolo P. Lava, May 29 2012
MATHEMATICA
s[n_] := s[n] = Sum[ MoebiusMu[k]*Log[Zeta[6*k]]/k, {k, 1, n}] // RealDigits[#, 10, 104]& // First // Prepend[#, 0]&; s[100]; s[n = 200]; While[s[n] != s[n - 100], n = n + 100]; s[n] (* Jean-François Alcover, Feb 14 2013 *)
RealDigits[ PrimeZetaP[ 6], 10, 111][[1]] (* Robert G. Wilson v, Sep 03 2014 *)
PROG
(MAGMA) R := RealField(106);
PrimeZeta := func<k, N | &+[R|MoebiusMu(n)/n*Log(ZetaFunction(R, k*n)): n in[1..N]]>;
[0]cat Reverse(IntegerToSequence(Floor(PrimeZeta(6, 57)*10^105)));
// Jason Kimberley, Dec 30 2016
(PARI) sumeulerrat(1/p, 6) \\ Hugo Pfoertner, Feb 03 2020
CROSSREFS
KEYWORD
AUTHOR
Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
STATUS
editing