[go: up one dir, main page]

login
A083915 revision #6

A083915
Number of divisors of n that are congruent to 5 modulo 10.
11
0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 4
OFFSET
1,15
FORMULA
a(n) = A000005(n) - A083910(n) - A083911(n) - A083912(n) - A083913(n) - A083914(n) - A083916(n) - A083917(n) - A083918(n) - A083919(n).
G.f.: Sum_{k>=1} x^(5*k)/(1 - x^(10*k)). - Ilya Gutkovskiy, Sep 11 2019
MATHEMATICA
Table[Count[Divisors[n], _?(Mod[#, 10]==5&)], {n, 120}] (* Harvey P. Dale, Jan 26 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 08 2003
STATUS
editing