[go: up one dir, main page]

login
A060630 revision #4

A060630
For n > 9 let f(n) be formed by writing down the sums of every pair of consecutive digits of n: e.g. f(3469)=71015 because 3+4=7,4+6=10,6+9=15; let f(n)=0 if n is a single digit. Sequence gives smallest number requiring n iterations to reach zero.
2
0, 1, 10, 19, 109, 149, 197, 399, 694, 796, 893, 897, 1167, 1579, 1596, 1667, 1790, 1777, 2859, 1779, 1778, 1873, 3679, 5926, 11289, 9539, 13551, 4589, 5960, 12066, 12265, 19119, 10927, 12379, 11742, 65220, 34038, 40390, 1110025, 10100023
OFFSET
0,3
COMMENTS
24-th and 26-th terms are unknown, but a(25)=9539, a(27)=4589, and a(28)=5960.
FORMULA
a(n)=10^(n-2)+9, for n=2, 3, 4 and for n > 40
EXAMPLE
a(5)=149 because 149 -(1)-> 513 -(2)-> 64 -(3)-> 10 -(4)-> 1 -(5)-> 0. a(7)=399 because 399 -(1)-> 1218 -(2)-> 339 -(3)-> 612 -(4)-> 73 -(5)-> 10 -(6)-> 1 -(7)-> 0.
CROSSREFS
Sequence in context: A219688 A166706 A131495 * A070199 A015445 A220005
KEYWORD
base,nonn,new
AUTHOR
Jason Earls (jcearls(AT)cableone.net), Apr 14 2001
EXTENSIONS
More terms from Berend Jan van der Zwaag, Jun 23 2001
STATUS
approved