[go: up one dir, main page]

login
A060118 revision #2

A060118
A list of all finite permutations in "PermUnrank3L" ordering. (Inverses of the permutations of A060117).
39
1, 2, 1, 1, 3, 2, 2, 3, 1, 3, 2, 1, 3, 1, 2, 1, 2, 4, 3, 2, 1, 4, 3, 1, 3, 4, 2, 2, 3, 4, 1, 3, 2, 4, 1, 3, 1, 4, 2, 1, 4, 3, 2, 2, 4, 3, 1, 1, 4, 2, 3, 2, 4, 1, 3, 3, 4, 1, 2, 3, 4, 2, 1, 4, 2, 3, 1, 4, 1, 3, 2, 4, 3, 2, 1, 4, 3, 1, 2, 4, 2, 1, 3, 4, 1, 2, 3, 1, 2, 3, 5, 4, 2, 1, 3, 5, 4, 1, 3, 2, 5, 4, 2, 3, 1
OFFSET
0,2
COMMENTS
In contrast to PermUnrank3R (A060117), PermUnrank3L applies each successive transposition from the left, not from the right, thus producing the inverse (permutation) of what PermUnrank3R would produce.
FORMULA
[seq(op(PermUnrank3L(j)),j=0..)]; (Maple code given below)
EXAMPLE
In this table each row consists of A001563[n] permutations of (n+1) terms;
Append to each an infinite amount of fixed terms, and we get a list of rearrangements of natural numbers, but with only a finite number of terms permuted:
1/2,3,4,5,6,7,8,9,...
2,1/3,4,5,6,7,8,9,...
1,3,2/4,5,6,7,8,9,...
2,3,1/4,5,6,7,8,9,...
3,2,1/4,5,6,7,8,9,...
3,1,2/4,5,6,7,8,9,...
1,2,4,3/5,6,7,8,9,...
2,1,4,3/5,6,7,8,9,...
MAPLE
with(group); permul := (a, b) -> mulperms(b, a); PermUnrank3L := proc(r) local n; n := nops(factorial_base(r)); convert(PermUnrank3Laux(n+1, r, []), 'permlist', 1+(((r+2) mod (r+1))*n)); end; PermUnrank3Laux := proc(n, r, p) local s; if(0 = r) then RETURN(p); else s := floor(r/((n-1)!)); RETURN(PermUnrank3Laux(n-1, r-(s*((n-1)!)), permul([[n, n-s]], p))); fi; end;
CROSSREFS
A060120 = Positions of these permutations in the "canonical list" A055089. Cf. also A060117.
Sequence in context: A111867 A326036 A133776 * A329143 A219032 A234567
KEYWORD
nonn,new
AUTHOR
Antti Karttunen Mar 02 2001
STATUS
approved