[go: up one dir, main page]

login
A059123 revision #30

A059123
Number of homeomorphically irreducible rooted trees (also known as series-reduced rooted trees, or rooted trees without nodes of degree 2) with n >= 1 nodes.
7
0, 1, 1, 0, 2, 2, 4, 6, 12, 20, 39, 71, 137, 261, 511, 995, 1974, 3915, 7841, 15749, 31835, 64540, 131453, 268498, 550324, 1130899, 2330381, 4813031, 9963288, 20665781, 42947715, 89410092, 186447559, 389397778, 814447067, 1705775653
OFFSET
0,5
REFERENCES
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 62, Eq. (3.3.9).
LINKS
N. J. A. Sloane, Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], (30-June-2014)
P. J. Cameron, Some treelike objects, Quart. J. Math. Oxford, 38 (1987), 155-183.
FORMULA
G.f.: 1 + ((1+x)/x)*f(x) - (f(x)^2+f(x^2))/(2*x) where 1+f(x) is g.f. for A001678 (homeomorphically irreducible planted trees by nodes).
a(n) = A001679(n) if n>0. - Michael Somos, Jun 13 2014
a(n) ~ c * d^n / n^(3/2), where d = A246403 = 2.18946198566085056388702757711... and c = 0.4213018528699249210965028... . - Vaclav Kotesovec, Jun 26 2014
EXAMPLE
G.f. = x + x^2 + 2*x^4 + 2*x^5 + 4*x^6 + 6*x^7 + 12*x^8 + 20*x^9 + ...
MAPLE
with(powseries): with(combstruct): n := 30: Order := n+3: sys := {B = Prod(C, Z), S = Set(B, 1 <= card), C = Union(Z, S)}:
G001678 := (convert(gfseries(sys, unlabeled, x)[S(x)], polynom)) * x^2: G0temp := G001678 + x^2:
G059123 := G0temp / x + G0temp - (G0temp^2+eval(G0temp, x=x^2))/(2*x): A059123 := 0, seq(coeff(G059123, x^i), i=1..n); # Ulrich Schimke (ulrschimke(AT)aol.com)
MATHEMATICA
terms = 36; (* F = G001678 *) F[_] = 0; Do[F[x_] = (x^2/(1 + x))*Exp[Sum[ F[x^k]/(k*x^k), {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms + 1}];
G[x_] = 1 + ((1 + x)/x)*F[x] - (F[x]^2 + F[x^2])/(2*x) + O[x]^terms;
CoefficientList[G[x] - 1, x] (* Jean-François Alcover, May 25 2012, updated Jan 12 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<3, n>0, A = x / (1 - x^2) + x * O(x^n); for(k=3, n-1, A /= (1 - x^k + x * O(x^n))^polcoeff(A, k)); polcoeff( (1 + x) * A - x * (A^2 + subst(A, x, x^2)) / 2, n))}; /* Michael Somos, Jun 13 2014 */
CROSSREFS
Cf. A001679.
Cf. A000055 (trees by nodes), A000014 (homeomorphically irreducible trees by nodes), A000669 (homeomorphically irreducible planted trees by leaves), A000081 (rooted trees by nodes).
Cf. A246403.
Sequence in context: A028408 A226452 A037163 * A001679 A030435 A063886
KEYWORD
nonn,easy,nice
AUTHOR
Wolfdieter Lang, Jan 09 2001
STATUS
editing