OFFSET
1,9
COMMENTS
To find the g.f., modify the Sage program below (cf. function f). It is very complicated to write it here. - Petros Hadjicostas, Oct 07 2019
LINKS
Discrete algorithms at the University of Bayreuth, Symmetrica.
Harald Fripertinger, Isometry Classes of Codes.
Harald Fripertinger, Snk2: Number of the isometry classes of all binary (n,k)-codes without zero-columns. [See column k=8.]
H. Fripertinger and A. Kerber, Isometry classes of indecomposable linear codes. In: G. Cohen, M. Giusti, T. Mora (eds), Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC 1995, Lect. Notes Comp. Sci. 948 (1995), pp. 194-204. [Here a(n) = S_{n,8,2}.]
Petr Lisonek, Combinatorial families enumerated by quasi-polynomials, J. Combin. Theory Ser. A 114(4) (2007), 619-630. [See Section 5.]
David Slepian, Some further theory of group codes, Bell System Tech. J. 39(5) (1960), 1219-1252.
David Slepian, Some further theory of group codes, Bell System Tech. J. 39(5) (1960), 1219-1252.
Wikipedia, Cycle index.
Wikipedia, Projective linear group.
PROG
(Sage) # Fripertinger's method to find the g.f. of column k >= 2 of A034253 (for small k):
def A034253col(k, length):
G1 = PSL(k, GF(2))
G2 = PSL(k-1, GF(2))
D1 = G1.cycle_index()
D2 = G2.cycle_index()
f1 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D1)
f2 = sum(i[1]*prod(1/(1-x^j) for j in i[0]) for i in D2)
f = f1 - f2
return f.taylor(x, 0, length).list()
# For instance the Taylor expansion for column k = 8 (current sequence) gives
print(A034253col(8, 30)) # Petros Hadjicostas, Oct 07 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Petros Hadjicostas, Oct 07 2019
STATUS
proposed