OFFSET
0,1
COMMENTS
Used to prove there are infinitely many primes of the form 4k+1 (see A282706). - N. J. A. Sloane, Feb 26 2017
REFERENCES
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 147.
F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sciences, Vol. 16E, No. 2 (1997), pp. 237-240.
H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
M. Le, On the Interesting Smarandache Product Sequences, Smarandache Notions Journal, Vol. 9, No. 1-2, 1998, 133-134.
M. Le, The Primes in Smarandache Power Product Sequences, Smarandache Notions Journal, Vol. 9, No. 1-2, 1998, 96-97.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..250
M. Fleuren, Smarandache Square Products.
F. Smarandache, Sequences of Numbers Involved in Unsolved Problems.
Apoloniusz Tyszka, On sets X, subset of N, whose finiteness implies that we know an algorithm which for every n, element of N, decides the inequality max (X) < n, (2019).
Apoloniusz Tyszka, On ZFC-formulae phi(x) for which we know a non-negative integer n such that max({x, element of N, phi(x)}) <= n if the set {x, element of N, phi(x)} is finite, 2019.
Eric Weisstein's World of Mathematics, Factorial
Eric Weisstein's World of Mathematics, Smarandache Sequences
MAPLE
with(combinat):seq(fibonacci(3, n!), n=0..16); # Zerinvary Lajos, Apr 21 2008
[seq(n!^2+1, n=0..20)]; # N. J. A. Sloane, Feb 26 2017
MATHEMATICA
Table[(n!)^2 + 1, {n, 0, 20}] (* Vladimir Joseph Stephan Orlovsky, Apr 08 2011 *)
PROG
(PARI) a(n)=n!^2 + 1 \\ Charles R Greathouse IV, Nov 30 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
editing