[go: up one dir, main page]

login
A381291
Number of subsets of 8 integers between 1 and n such that their sum is 0 modulo n.
0
1, 5, 15, 43, 99, 217, 429, 809, 1430, 2438, 3978, 6310, 9690, 14550, 21318, 30666, 43263, 60115, 82225, 111041, 148005, 195143, 254475, 328755, 420732, 534076, 672452, 840652, 1043460, 1287036, 1577532, 1922740, 2330445, 2810385, 3372291, 4028183, 4790071
OFFSET
9,2
REFERENCES
Sequence studied in: Number of partitions of modular integers, by David Broadhurst and Xavier Roulleau (in preparation).
FORMULA
G.f.: x^9*(1 + x - x^2 + 7*x^3 - 4*x^4 + 6*x^5 + 4*x^6 - 4*x^7 + 3*x^8 + 5*x^9 - 3*x^10 + x^11)/((1 - x)^4*(1 - x^2)^2*(1 - x^4)*(1 - x^8)).
EXAMPLE
For n=10, there are a(10)=5 order 8 subsets of Z/10Z with sum equal to 0 mod 10.
CROSSREFS
KEYWORD
nonn,new
AUTHOR
STATUS
approved