[go: up one dir, main page]

login
A376207
Numbers k such that ceiling(2*Pi*k/sqrt(2)) != ceiling(Pi/arcsin(sqrt(2)/(2*k))).
1
1, 70, 569, 58704, 15770314
OFFSET
1,2
COMMENTS
2*n/sqrt(2) > 1/arcsin(sqrt(2)/(2*n)) for all n > 0.
Limit_{x->oo} 2*x/sqrt(2) - 1/arcsin(sqrt(2)/(2*x)) = 0.
EXAMPLE
n k=a(n) 2*Pi*k/sqrt(2) Pi/arcsin(sqrt(2)/(2*k))
1 1 4.44288293816 4.000000000000
2 70 311.00180567109 310.996516371805
3 569 2528.00039181211 2527.999741125982
4 58704 260815.00000164873 260814.999995341832
5 15770314 70065659.00000001744 70065658.999999993965
CROSSREFS
Cf. A120702.
Sequence in context: A229576 A234556 A183715 * A104475 A169712 A235488
KEYWORD
nonn,more
AUTHOR
Hugo Pfoertner, Sep 15 2024
STATUS
approved