[go: up one dir, main page]

login
A375340
Decimal expansion of Sum_{p prime} ((2*p-1)/((p+1)*(p-1)^2)).
2
1, 5, 1, 5, 0, 7, 2, 4, 4, 3, 8, 5, 9, 8, 1, 6, 4, 2, 0, 6, 1, 8, 2, 2, 3, 1, 0, 1, 2, 1, 8, 2, 3, 5, 2, 1, 6, 7, 8, 7, 0, 5, 0, 5, 4, 6, 7, 5, 5, 6, 0, 1, 1, 0, 7, 7, 0, 0, 5, 2, 0, 6, 6, 9, 0, 3, 4, 9, 6, 6, 2, 5, 3, 0, 3, 2, 3, 8, 3, 6, 3, 4, 3, 3, 1, 5, 8, 0, 3, 0, 0, 9, 6, 0, 7, 1, 0, 9, 9, 8, 3, 5, 1, 3, 9
OFFSET
1,2
FORMULA
Equals Sum_{k>=2} A028242(k) * P(k), where P is the prime zeta function.
Equals zeta(2) * Limit_{m->oo} (1/m) * Sum_{k=1..m} A375339(k).
Equals A154945 * Limit_{m->oo} (1/m) * Sum_{k=1..m} A375341(k).
EXAMPLE
1.515072443859816420618223101218235216787050546755601...
PROG
(PARI) sumeulerrat((2*p-1)/((p+1)*(p-1)^2))
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Aug 12 2024
STATUS
approved