[go: up one dir, main page]

login
A374925
Number of n-color compositions of n having at least one pair of adjacent parts that are the same color.
1
0, 0, 1, 3, 10, 31, 91, 259, 726, 2007, 5489, 14888, 40122, 107574, 287239, 764405, 2028679, 5371858, 14198008, 37467982, 98749767, 259984452, 683865318, 1797500121, 4721662597, 12396308875, 32531025970, 85337831350, 223794544179, 586736215856, 1537941527011
OFFSET
0,4
FORMULA
G.f.: Sum_{i>0} ( x^(2*i)/((1 - x)*(1 - x + x^i)*(1 - Sum_{j>0} ((x^j)/(1 - x + x^j)))) )/( 1 - Sum_{k>0} ((x^k)/(1 - x)) ).
a(n) = A088305(n) - A242551(n).
EXAMPLE
a(4) = 10 counts: (1,1,1,1), (1,1,2_a), (1,1,2_b), (1,2_a,1), (1,3_a), (2_a,1,1), (2_a,2_a), (2_b,1,1), (2_b,2_b), (3_a,1).
PROG
(PARI)
C_x(N) = {my(x='x+O('x^N), h=(sum(i=1, N, (x^(2*i))/((1-x)*(1-x+x^i)*(1-sum(j=1, N, (x^j)/(1-x+x^j))))))/(1-sum(i=1, N, (x^i)/(1-x)))); concat([0, 0], Vec(h))}
C_x(40)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
John Tyler Rascoe, Jul 24 2024
STATUS
approved