OFFSET
1,7
COMMENTS
This sequence gives the exponents of 3's in the Pierpont primes, A374577 gives the exponents of 2's.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
EXAMPLE
a(1) = 0, because the first Pierpont prime is 2 = 2^0 * 3^0 + 1.
a(6) = 0, because the sixth Pierpont prime is 17 = 2^4 * 3^0 + 1.
a(7) = 2, because the seventh Pierpont prime is 19 = 2^1 * 3^2 + 1.
MATHEMATICA
With[{lim = 10^12}, IntegerExponent[Select[Sort@ Flatten@Table[2^i*3^j + 1, {i, 0, Log2[lim]}, {j, 0, Log[3, lim/2^i]}], PrimeQ] - 1, 3]] (* Amiram Eldar, Sep 02 2024 *)
PROG
(PARI) lista(lim) = {my(s = List()); for(i = 0, logint(lim, 2), for(j = 0, logint(lim >> i, 3), listput(s, 2^i * 3^j + 1))); s = Set(s); for(i = 1, #s, if(isprime(s[i]), print1(valuation(s[i] - 1, 3), ", "))); } \\ Amiram Eldar, Sep 02 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
William C. Laursen, Jul 11 2024
EXTENSIONS
More terms from Stefano Spezia, Jul 12 2024
STATUS
approved