[go: up one dir, main page]

login
A374578
Pierpont primes are primes of the form 2^t*3^u + 1; this sequence gives the u's in order.
4
0, 0, 0, 1, 1, 0, 2, 2, 2, 1, 3, 4, 1, 0, 3, 5, 2, 1, 2, 4, 6, 4, 6, 3, 5, 4, 1, 7, 2, 9, 8, 0, 7, 2, 8, 4, 10, 9, 6, 1, 8, 5, 2, 6, 3, 5, 4, 9, 4, 12, 11, 3, 14, 3, 15, 5, 7, 16, 13, 3, 10, 4, 17, 10, 11, 12, 3, 4, 1, 8, 5, 8, 4, 11, 7, 15, 12, 2, 10, 1, 22, 4
OFFSET
1,7
COMMENTS
This sequence gives the exponents of 3's in the Pierpont primes, A374577 gives the exponents of 2's.
LINKS
FORMULA
a(n) = A007949(A005109(n)-1).
EXAMPLE
a(1) = 0, because the first Pierpont prime is 2 = 2^0 * 3^0 + 1.
a(6) = 0, because the sixth Pierpont prime is 17 = 2^4 * 3^0 + 1.
a(7) = 2, because the seventh Pierpont prime is 19 = 2^1 * 3^2 + 1.
MATHEMATICA
With[{lim = 10^12}, IntegerExponent[Select[Sort@ Flatten@Table[2^i*3^j + 1, {i, 0, Log2[lim]}, {j, 0, Log[3, lim/2^i]}], PrimeQ] - 1, 3]] (* Amiram Eldar, Sep 02 2024 *)
PROG
(PARI) lista(lim) = {my(s = List()); for(i = 0, logint(lim, 2), for(j = 0, logint(lim >> i, 3), listput(s, 2^i * 3^j + 1))); s = Set(s); for(i = 1, #s, if(isprime(s[i]), print1(valuation(s[i] - 1, 3), ", "))); } \\ Amiram Eldar, Sep 02 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
William C. Laursen, Jul 11 2024
EXTENSIONS
More terms from Stefano Spezia, Jul 12 2024
STATUS
approved