[go: up one dir, main page]

login
A374441
Triangle read by rows: T(n, k) = binomial(n - floor(k/2), ceiling(k/2)) - binomial(n - ceiling(k/2), floor(k/2)).
2
0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 1, 0, 0, 4, 0, 3, 0, 0, 0, 5, 0, 6, 0, 1, 0, 0, 6, 0, 10, 0, 4, 0, 0, 0, 7, 0, 15, 0, 10, 0, 1, 0, 0, 8, 0, 21, 0, 20, 0, 5, 0, 0, 0, 9, 0, 28, 0, 35, 0, 15, 0, 1, 0, 0, 10, 0, 36, 0, 56, 0, 35, 0, 6, 0, 0, 0, 11, 0, 45, 0, 84, 0, 70, 0, 21, 0, 1, 0
OFFSET
0,8
COMMENTS
Member of the family of Fibonacci polynomials (A011973, A162515, ...) and Chebyshev polynomials (A053119).
LINKS
Henry W. Gould, A Variant of Pascal's Triangle, The Fibonacci Quarterly, Vol. 3, Nr. 4, Dec. 1965, p. 257-271.
FORMULA
T(n, k) = [x^(n-k)][z^n] (x / (1 - x*z - z^2)).
T(n, k) = binomial(n - (k + 1)/2, (k + 1)/2) if k is odd, and otherwise 0.
Sum_{k=0..n} T(n, k) = Fibonacci(n + 1) - 1.
Columns with odd index agree with the odd indexed columns of A374440.
EXAMPLE
Triangle starts:
[ 0] 0;
[ 1] 0, 0;
[ 2] 0, 1, 0;
[ 3] 0, 2, 0, 0;
[ 4] 0, 3, 0, 1, 0;
[ 5] 0, 4, 0, 3, 0, 0;
[ 6] 0, 5, 0, 6, 0, 1, 0;
[ 7] 0, 6, 0, 10, 0, 4, 0, 0;
[ 8] 0, 7, 0, 15, 0, 10, 0, 1, 0;
[ 9] 0, 8, 0, 21, 0, 20, 0, 5, 0, 0;
[10] 0, 9, 0, 28, 0, 35, 0, 15, 0, 1, 0;
MAPLE
T := (n, k) -> if k::even then 0 else binomial(n - (k + 1)/2, (k + 1)/2) fi:
# Or as a recurrence:
T := proc(n, k) option remember; if k::even or k > n then 0 elif k = 1 then n - 1 else T(n - 1, k) + T(n - 2, k - 2) fi end:
seq(seq(T(n, k), k = 0..n), n = 0..12);
CROSSREFS
Cf. A374440 (odd columns agree).
Cf. A000071 (row sums), A065941, A194005, A103631, A007318.
Sequence in context: A173541 A333767 A325165 * A076849 A322977 A321374
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jul 19 2024
STATUS
approved