[go: up one dir, main page]

login
A374185
a(n) = floor(Integral_{t=0..n} floor(exp(t)) dt). The Waldvogel sequence.
1
0, 1, 5, 17, 51, 144, 399, 1092
OFFSET
0,3
COMMENTS
Named after Prof. Jörg Waldvogel (Swiss mathematician). For the variant using the ceiling of the approximation see A374186.
LINKS
Pedro Gonnet, A Review of Error Estimation in Adaptive Quadrature, ACM Computing Surveys, 2012, arXiv:1003.4629 [cs.NA]. (p. 31, 32.)
MAPLE
Digits := 40: W := n -> evalf(int(floor(exp(t)), t = 0...n)):
for n from 0 to 6 do floor(W(n)) od;
# recommended: plot(floor(exp(t)), t = 0..4);
CROSSREFS
Variant: A374186.
Sequence in context: A196283 A196333 A039783 * A103685 A116521 A290900
KEYWORD
nonn,more,hard
AUTHOR
Peter Luschny, Jul 06 2024
STATUS
approved