[go: up one dir, main page]

login
A374082
Numbers k such that every prime dividing k also divides A114707(k-1).
0
7, 11, 13, 15, 19, 21, 23, 25, 27, 29, 50, 64, 100, 150, 162, 216, 243, 384, 388, 567, 576, 625, 832, 841, 873, 1024, 1029, 1176, 1215, 1528, 1536, 1856, 2187, 3185, 3712, 4096, 4374, 5831, 6400, 6498, 8192, 8208, 8624, 9800, 10240, 10692, 11933, 14336, 15936, 16807, 17250, 18954, 19683, 21952
OFFSET
1,1
COMMENTS
Numbers k such that A114707(k) = A114707(k-1).
Numbers k such that A114708(k) = 0.
EXAMPLE
a(3) = 13 is a term because 13, the only prime dividing 13, also divides A114707(12) = 13.
MAPLE
R:= 1: v:= 1:
for n from 2 to 10^6 do
v:= v + nops(select(p -> v mod p <> 0, numtheory:-factorset(n)));
R:= R, v;
od:
select(t -> R[t]=R[t-1], [$2..10^6]);
CROSSREFS
Sequence in context: A051266 A370007 A172247 * A172120 A112090 A373673
KEYWORD
nonn
AUTHOR
Robert Israel, Jun 27 2024
STATUS
approved