[go: up one dir, main page]

login
A374000
a(n) = Product_{i=1..m} prime(k + T(n,i)) where k = pi(A186702(n)), T(n,i) is the i-th term in row n of A186634, and m = length of row n of A186634.
0
15, 385, 1001, 5005, 85085, 323323, 7436429, 955049953, 183698727318433150098859517, 35336848261, 435656388001, 3868985835982814590518552822749329543261, 1448810778701, 20475850236047, 5663533044013, 343523383391078124677551786579090220816600929, 62298863484143
OFFSET
1,1
EXAMPLE
Let p = A186702 and let T(n,i) be the i-th term in row n of A186634.
a(1) = 15 since p(1) = 3 and row 1 of T is {0, 2}, hence 3 * (3+2) = 3 * 5 = 15.
a(2) = 385 since p(2) = 5 and row 2 of T is {0, 2, 4}, hence 5 * (5+2) * (5+2+4) = 5*7*11 = 385.
Prime decomposition of the first 8 terms.
a(n) k k+m-1 prime decomposition.
----------------------------------------------
15 2 3 3 * 5
385 3 5 5 * 7 * 11
1001 4 6 7 * 11 * 13
5005 3 6 5 * 7 * 11 * 13
85085 3 7 5 * 7 * 11 * 13 * 17
323323 4 8 7 * 11 * 13 * 17 * 19
7436429 4 9 7 * 11 * 13 * 17 * 19 * 23
955049953 5 11 11 * 13 * 17 * 19 * 23 * 29 * 31
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Jul 04 2024
STATUS
approved