[go: up one dir, main page]

login
A373892
a(n) is the smallest number that can be partitioned in exactly n ways as the sum of two Duffinian numbers (A003624).
0
1, 8, 25, 43, 84, 71, 102, 160, 150, 219, 226, 196, 244, 350, 328, 300, 330, 354, 400, 386, 448, 408, 434, 390, 510, 536, 462, 546, 570, 624, 608, 740, 722, 690, 714, 770, 726, 660, 750, 804, 842, 858, 876, 870, 932, 914, 924, 840, 986, 1038, 966, 1108, 1050, 1056
OFFSET
0,2
EXAMPLE
1 cannot be written as the sum of two Duffinian numbers, so a(0) = 1.
The numbers from 2 to 7 cannot be written as the sum of two Duffinian numbers and 8 = 4 + 4 = A003624(1) + A003624(1), so a(1) = 8.
25 = 4 + 21 = 9 + 16 and 4 = A003624(1), 9 = A003624(3), 16 = A003624(4), 21 = A003624(5) and the numbers 9 to 24 cannot be written in two ways as a sum of two Duffinian numbers. Thus a(2) = 25.
MATHEMATICA
dufQ[n_] := CompositeQ[n] && CoprimeQ[n, DivisorSigma[1, n]]; f[n_] := Sum[If[dufQ[k] && dufQ[n - k], 1, 0], {k, 1, Floor[n/2]}]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[54, 2000] (* Amiram Eldar, Jul 19 2024 *)
PROG
(Magma) f:=func<n|n ne 1 and not IsPrime(n) and Gcd(n, DivisorSigma(1, n)) eq 1>; b:=[n: n in [1..2000] |f(n)]; a:=[]; for n in [0..60] do k:=1; while #RestrictedPartitions(k, 2, Set(b)) ne n do k:=k+1; end while; Append(~a, k); end for; a;
CROSSREFS
Cf. A003624.
Sequence in context: A244276 A161448 A031096 * A303194 A188819 A123605
KEYWORD
nonn
AUTHOR
Marius A. Burtea, Jul 12 2024
STATUS
approved