[go: up one dir, main page]

login
A373806
Primes in A373805 in order of their occurrence.
4
3, 7, 103, 43, 131, 83, 109, 1889, 181, 199, 55807, 1289, 2927, 419, 457, 463, 971, 523, 1091, 563, 617, 159233, 761, 1549, 821, 839, 6959, 919, 937, 971, 2003, 1039, 17793023, 1279, 1297, 10513, 11087, 5849, 12143, 3181, 1685503, 3541, 58943, 3877, 15887, 2039, 2069, 8377, 2141, 2179, 2304770047
OFFSET
1,1
COMMENTS
The next prime after 169159 is not presently known.
Added Aug 14 2024: it is 123287*2^m + 1, where m = 2538167. See the Ballinger-Keller link. More details will be added soon. - N. J. A. Sloane, Aug 14 2024
From Michael De Vlieger, Aug 12 2024: (Start)
See link for decimal expansion of a(320) = 21167 * 2^6095 + 1, a number with 1840 decimal digits.
a(607) = A373805(11585) = 1971503; no other primes seen for n <= 2^16. (End)
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..319 [a(320) is too large to include - see Michael De Vlieger's comment and links]
Ray Ballinger and Wilfrid Keller, The SierpiƄski Problem: Definition and Status
Michael De Vlieger, Decimal expansion of A373805(8475) = a(320), bfile format with offset 1.
MATHEMATICA
nn = 2^14; s = j = 1; Reap[Monitor[Do[If[PrimeQ[j], Sow[j]; s = -s; k = Prime[n] + s, k = 2 j + s]; j = k, {n, 2, nn}], n] ][[-1, 1]] (* Michael De Vlieger, Aug 12 2024 *)
PROG
(Python) # uses imports and A373805_gen in A373805
def agen(): # generator of terms
yield from (ai for i, ai in enumerate(A373805_gen(), 1) if isprime(ai))
print(list(islice(agen(), 51))) # Michael S. Branicky, Aug 12 2024
CROSSREFS
Sequence in context: A362682 A299377 A129660 * A243734 A372483 A158467
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 11 2024
STATUS
approved