[go: up one dir, main page]

login
A373583
Expansion of 1 / ( (1 - 16*x^4) * (1 - x/(1 - 16*x^4)^(1/4)) ).
3
1, 1, 1, 1, 17, 21, 25, 29, 289, 397, 521, 661, 4913, 7229, 10137, 13701, 83521, 129133, 190249, 269877, 1419857, 2280125, 3492281, 5149701, 24137569, 39950221, 63153481, 96159061, 410338673, 696126557, 1129839065, 1767607973, 6975757441, 12080257069
OFFSET
0,5
FORMULA
a(4*n) = 17^n for n >= 0.
a(n) = Sum_{k=0..floor(n/4)} 16^k * binomial(n/4,k).
a(n) == 1 (mod 4).
PROG
(PARI) a(n) = sum(k=0, n\4, 16^k*binomial(n/4, k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 11 2024
STATUS
approved