[go: up one dir, main page]

login
A373533
Least starting prime of exactly n consecutive primes p_i (i = 1..n) such that omega(p_i + 1) = 1 + i.
0
5, 23, 499, 13093, 501343, 162598021, 25296334003
OFFSET
1,1
EXAMPLE
a(1) = 5, because omega(5+1) = 2, and no lesser number has this property.
For n=3, the primes starting at a(3) = 499 are as follows and are a run of exactly 3 omega = i+1,
i = 1 2 3
p = 499, 503, 509, 521
omega(p+1) = 2, 3, 4, 3
\-----------/
MATHEMATICA
a[n_]:=Module[{k=1}, While[Product[Boole[PrimeNu[Prime[k+i-1]+1]==1+i], {i, n}]==0, k++]; Prime[k]]; Array[a, 5] (* Stefano Spezia, Jun 10 2024 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jean-Marc Rebert, Jun 08 2024
STATUS
approved