%I #16 May 18 2024 23:43:37
%S 8,3,0,7,7,4,7,8,1,2,3,6,4,7,7,9,9,8,2,1,8,3,9,1,4,9,8,3,0,6,0,7,3,3,
%T 2,7,8,8,8,3,5,8,5,3,5,9,6,3,0,2,9,5,1,4,0,0,7,8,5,7,6,9,1,6,0,1,0,1,
%U 3,8,7,3,9,4,1,0,1,0,5,4,2,3,4,0,2,1,6,6,1,6
%N Decimal expansion of (25/297)*Pi^2.
%H Paolo Xausa, <a href="/A372585/b372585.txt">Table of n, a(n) for n = 0..10000</a>
%H J. M. Borwein and P. B. Borwein, <a href="https://doi.org/10.2307/2324993">Strange Series and High Precision Fraud</a>, The American Mathematical Monthly, Vol. 99, No. 7 (1992), pp. 622-640.
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%F Equals Sum_{k >= 1} A196564(k)*(1/k^2 - 1/(k+1)^2). See Sum 3 in Borwein and Borwein (1992), p. 622.
%e 0.8307747812364779982183914983060733278883585359630295140...
%t First[RealDigits[25*Pi^2/297, 10, 100]]
%Y Cf. A000796, A002388, A196564, A372609.
%K nonn,cons
%O 0,1
%A _Paolo Xausa_, May 06 2024