OFFSET
1,1
COMMENTS
Since the sum of any two primes > 2 is even, we rather consider odd prime factors.
Can it be proved or disproved that there are primes that occur only finitely many times (or never) in this sequence? If so, which is the smallest such prime?
FORMULA
EXAMPLE
Sums of two consecutive primes are given as s(n) = A001043(n). The least odd prime factor (or 2 if there's no odd prime factor) of these terms is a(n):
n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...
s = 5, 8, 12, 18, 24, 30, 36, 42, 52, 60, 68, 78, 84, 90, 100, 112, 120, 128, ...
a = 5, 2, 3, 3, 3, 3, 3, 3, 13, 3, 17, 3, 3, 3, 5, 7, 3, 2, ...
Also, a(21) = spf(152) = 19; a(23) = spf(172) = 43; a(32) = spf(268) = 67, ...
PROG
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Apr 24 2024
STATUS
approved