[go: up one dir, main page]

login
A372263
Least odd prime factor of the n-th sum of two consecutive primes, A001043(n) = prime(n) + prime(n+1), or 2 if there is no odd prime factor.
0
5, 2, 3, 3, 3, 3, 3, 3, 13, 3, 17, 3, 3, 3, 5, 7, 3, 2, 3, 3, 19, 3, 43, 3, 3, 3, 3, 3, 3, 3, 3, 67, 3, 3, 3, 7, 5, 3, 5, 11, 3, 3, 3, 3, 3, 5, 7, 3, 3, 3, 59, 3, 3, 127, 5, 7, 3, 137, 3, 3, 3, 3, 3, 3, 3, 3, 167, 3, 3, 3, 89, 3, 5, 47, 3, 193, 3, 3, 3, 3, 3, 3, 3, 109, 3, 223
OFFSET
1,1
COMMENTS
Since the sum of any two primes > 2 is even, we rather consider odd prime factors.
Can it be proved or disproved that there are primes that occur only finitely many times (or never) in this sequence? If so, which is the smallest such prime?
FORMULA
a(n) = max(A078701(A001043(n)), 2) = A020639(max(A000265(A001043(n)), 2)), where A000265(m) > 2 unless m is in A000079.
EXAMPLE
Sums of two consecutive primes are given as s(n) = A001043(n). The least odd prime factor (or 2 if there's no odd prime factor) of these terms is a(n):
n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, ...
s = 5, 8, 12, 18, 24, 30, 36, 42, 52, 60, 68, 78, 84, 90, 100, 112, 120, 128, ...
a = 5, 2, 3, 3, 3, 3, 3, 3, 13, 3, 17, 3, 3, 3, 5, 7, 3, 2, ...
Also, a(21) = spf(152) = 19; a(23) = spf(172) = 43; a(32) = spf(268) = 67, ...
PROG
(PARI) apply( {a(n) = max(A078701(A001043(n)), 2)}, [1..99])
/* a "self-contained" but less efficient definition:
a(n) = factor(max((n=prime(n)+prime(n+1))>>valuation(n, 2), 2))[1, 1] */
CROSSREFS
Cf. A001043 (sums of two consecutive primes), A078701 (least odd prime divisor), A020639 (spf: least prime factor), A000265 (odd part of n), A000079 (powers of 2).
Cf. A024677 (spf of A024675(n) = A001043(n)/2).
Sequence in context: A291358 A059650 A112244 * A210487 A071216 A069483
KEYWORD
nonn
AUTHOR
M. F. Hasler, Apr 24 2024
STATUS
approved