OFFSET
0,8
COMMENTS
EXAMPLE
The partition (11,7,5,4,3,2,1) has qualifying set partitions {{11},{4,7},{1,2,3,5}} and {{11},{1,3,7},{2,4,5}} so is counted under a(11).
The a(5) = 1 through a(9) = 13 partitions:
(5,4,3,2,1) (6,5,4,2,1) (7,5,4,3,2) (8,6,5,3,2) (9,6,5,4,3)
(7,6,4,3,1) (8,7,5,3,1) (9,7,5,4,2)
(7,6,5,2,1) (8,7,6,2,1) (9,7,6,3,2)
(6,5,4,3,2,1) (7,6,5,3,2,1) (9,8,5,4,1)
(8,6,4,3,2,1) (9,8,6,3,1)
(9,8,7,2,1)
(7,6,5,4,3,2)
(8,6,5,4,3,1)
(8,7,5,4,2,1)
(8,7,6,3,2,1)
(9,6,5,4,2,1)
(9,7,5,3,2,1)
(9,8,4,3,2,1)
MATHEMATICA
hwt[n_]:=Total[Cases[FactorInteger[n], {p_, k_}:>PrimePi[p]*k]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
Table[Length[Select[IntegerPartitions[3n], UnsameQ@@#&&Select[facs[Times@@Prime/@#], Length[#]==3&&SameQ@@hwt/@#&]!={}&]], {n, 0, 10}]
CROSSREFS
A371783 counts k-quanimous partitions.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Apr 20 2024
STATUS
approved