[go: up one dir, main page]

login
A371366
Expansion of (1/x) * Series_Reversion( x * (1-5*x)^2 / (1-4*x) ).
0
1, 6, 71, 1046, 17231, 303876, 5611556, 107128046, 2097177071, 41870595806, 849284396751, 17451906690856, 362539208779396, 7601087206512096, 160635649725455256, 3418231465333316126, 73178876192536066031, 1575035438677302619746
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} 4^(n-k) * binomial(2*n+k+1,k) * binomial(2*n,n-k).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serreverse(x*(1-5*x)^2/(1-4*x))/x)
(PARI) a(n) = sum(k=0, n, 4^(n-k)*binomial(2*n+k+1, k)*binomial(2*n, n-k))/(n+1);
CROSSREFS
Cf. A078009.
Sequence in context: A092660 A186658 A341967 * A092085 A028844 A274644
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 19 2024
STATUS
approved