[go: up one dir, main page]

login
A370418
Triangle read by rows. T(n, k) = (n - k)! * (n + k)!.
0
1, 1, 2, 4, 6, 24, 36, 48, 120, 720, 576, 720, 1440, 5040, 40320, 14400, 17280, 30240, 80640, 362880, 3628800, 518400, 604800, 967680, 2177280, 7257600, 39916800, 479001600, 25401600, 29030400, 43545600, 87091200, 239500800, 958003200, 6227020800, 87178291200
OFFSET
0,3
FORMULA
Sum_{k=0..n} (-1)^k*T(n, k) = n!^2 / 2 + (-1)^n * (2*n + 2)! / (2*n + 2)^2.
EXAMPLE
Triangle starts:
[0] 1;
[1] 1, 2;
[2] 4, 6, 24;
[3] 36, 48, 120, 720;
[4] 576, 720, 1440, 5040, 40320;
[5] 14400, 17280, 30240, 80640, 362880, 3628800;
[6] 518400, 604800, 967680, 2177280, 7257600, 39916800, 479001600;
MAPLE
T := (n, k) -> (n - k)! * (n + k)!:
seq(seq(T(n, k), k = 0..n), n = 0..7);
MATHEMATICA
Table[(n - k)!*(n + k)!, {n, 0, 7}, {k, 0, n}] // Flatten (* Michael De Vlieger, Mar 05 2024 *)
CROSSREFS
Cf. A010050 (main diagonal), A009445 (subdiagonal), A001044 (column 0), A175430 (column 1), A024420 (bisection is alternating sum).
Sequence in context: A086172 A261832 A141526 * A226169 A343728 A261746
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Feb 27 2024
STATUS
approved