[go: up one dir, main page]

login
A369848
Number of compositions of 5*n-4 into parts 3 and 5.
5
0, 1, 3, 6, 11, 23, 57, 149, 379, 928, 2227, 5336, 12872, 31236, 75949, 184524, 447702, 1085401, 2631240, 6380241, 15474230, 37533077, 91034937, 220790480, 535475968, 1298668192, 3149634952, 7638811025, 18526466357, 44932341015, 108974456212, 264295580664
OFFSET
1,3
FORMULA
a(n) = A052920(5*n-4).
a(n) = Sum_{k=0..floor(n/3)} binomial(n+2*k,n-2-3*k).
a(n) = 5*a(n-1) - 10*a(n-2) + 11*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x^2*(1-x)^2/((1-x)^5 - x^3).
MATHEMATICA
LinearRecurrence[{5, -10, 11, -5, 1}, {0, 1, 3, 6, 11}, 50] (* Paolo Xausa, Mar 15 2024 *)
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(n+2*k, n-2-3*k));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Feb 03 2024
STATUS
approved