[go: up one dir, main page]

login
A369505
Expansion of (1/x) * Series_Reversion( x / ((1+x)^3+x)^2 ).
1
1, 8, 86, 1066, 14361, 204314, 3020745, 45955442, 714723588, 11312450432, 181625888244, 2950848879096, 48423670556100, 801454908292020, 13363137183238881, 224253208102065664, 3784736105491395780, 64197997357038408976, 1093863031541592651003
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..n} binomial(2*n+2,k) * binomial(6*n-3*k+6,n-k).
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serreverse(x/((1+x)^3+x)^2)/x)
(PARI) a(n) = sum(k=0, n, binomial(2*n+2, k)*binomial(6*n-3*k+6, n-k))/(n+1);
CROSSREFS
Sequence in context: A230621 A357420 A371407 * A268052 A268075 A202545
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 25 2024
STATUS
approved