[go: up one dir, main page]

login
A369312
Square array A(n, k), n >= 0, k > 0, read by upwards antidiagonals: P(A(n, k)) is the quotient of the polynomial long division of P(n) by P(k) (where P(m) denotes the polynomial over GF(2) whose coefficients are encoded in the binary expansion of the nonnegative integer m).
1
0, 1, 0, 2, 0, 0, 3, 1, 0, 0, 4, 1, 1, 0, 0, 5, 2, 1, 0, 0, 0, 6, 2, 3, 0, 0, 0, 0, 7, 3, 3, 1, 0, 0, 0, 0, 8, 3, 2, 1, 1, 0, 0, 0, 0, 9, 4, 2, 1, 1, 1, 0, 0, 0, 0, 10, 4, 7, 1, 1, 1, 1, 0, 0, 0, 0, 11, 5, 7, 2, 1, 1, 1, 0, 0, 0, 0, 0, 12, 5, 6, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0
OFFSET
0,4
COMMENTS
For any number m >= 0 with binary expansion Sum_{k >= 0} b_k * 2^k, P(m) = Sum_{k >= 0} b_k * X^k.
EXAMPLE
Array A(n, k) begins:
n\k | 1 2 3 4 5 6 7 8 9 10 11 12
----+---------------------------------------
0 | 0 0 0 0 0 0 0 0 0 0 0 0
1 | 1 0 0 0 0 0 0 0 0 0 0 0
2 | 2 1 1 0 0 0 0 0 0 0 0 0
3 | 3 1 1 0 0 0 0 0 0 0 0 0
4 | 4 2 3 1 1 1 1 0 0 0 0 0
5 | 5 2 3 1 1 1 1 0 0 0 0 0
6 | 6 3 2 1 1 1 1 0 0 0 0 0
7 | 7 3 2 1 1 1 1 0 0 0 0 0
8 | 8 4 7 2 2 3 3 1 1 1 1 1
9 | 9 4 7 2 2 3 3 1 1 1 1 1
10 | 10 5 6 2 2 3 3 1 1 1 1 1
11 | 11 5 6 2 2 3 3 1 1 1 1 1
12 | 12 6 4 3 3 2 2 1 1 1 1 1
PROG
(PARI) A(n, k) = { fromdigits(lift(Vec( (Mod(1, 2) * Pol(binary(n))) \ (Mod(1, 2) * Pol(binary(k))))), 2) }
CROSSREFS
See A369311 for the corresponding remainders.
Sequence in context: A288437 A287736 A180969 * A259479 A238343 A238128
KEYWORD
nonn,base,tabl
AUTHOR
Rémy Sigrist, Jan 19 2024
STATUS
approved