OFFSET
0,4
COMMENTS
For any number m >= 0 with binary expansion Sum_{k >= 0} b_k * 2^k, P(m) = Sum_{k >= 0} b_k * X^k.
EXAMPLE
Array A(n, k) begins:
n\k | 1 2 3 4 5 6 7 8 9 10 11 12
----+---------------------------------------
0 | 0 0 0 0 0 0 0 0 0 0 0 0
1 | 1 0 0 0 0 0 0 0 0 0 0 0
2 | 2 1 1 0 0 0 0 0 0 0 0 0
3 | 3 1 1 0 0 0 0 0 0 0 0 0
4 | 4 2 3 1 1 1 1 0 0 0 0 0
5 | 5 2 3 1 1 1 1 0 0 0 0 0
6 | 6 3 2 1 1 1 1 0 0 0 0 0
7 | 7 3 2 1 1 1 1 0 0 0 0 0
8 | 8 4 7 2 2 3 3 1 1 1 1 1
9 | 9 4 7 2 2 3 3 1 1 1 1 1
10 | 10 5 6 2 2 3 3 1 1 1 1 1
11 | 11 5 6 2 2 3 3 1 1 1 1 1
12 | 12 6 4 3 3 2 2 1 1 1 1 1
PROG
(PARI) A(n, k) = { fromdigits(lift(Vec( (Mod(1, 2) * Pol(binary(n))) \ (Mod(1, 2) * Pol(binary(k))))), 2) }
CROSSREFS
KEYWORD
AUTHOR
Rémy Sigrist, Jan 19 2024
STATUS
approved