[go: up one dir, main page]

login
A368966
Expansion of (1/x) * Series_Reversion( x * (1-x) * (1-x-x^3)^2 ).
8
1, 3, 15, 93, 644, 4769, 36953, 295867, 2428373, 20322566, 172759032, 1487632887, 12948891408, 113748663495, 1007117650350, 8978151790011, 80519598139947, 725976573163011, 6576546244337046, 59829384514916820, 546375444906314661, 5006934930385254672
OFFSET
0,2
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/3)} binomial(2*n+k+1,k) * binomial(4*n-2*k+2,n-3*k).
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1-x)*(1-x-x^3)^2)/x)
(PARI) a(n, s=3, t=2, u=1) = sum(k=0, n\s, binomial(t*(n+1)+k-1, k)*binomial((t+u+1)*(n+1)-(s-1)*k-2, n-s*k))/(n+1);
CROSSREFS
Cf. A368965.
Sequence in context: A002893 A256335 A258313 * A074539 A103210 A203014
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 10 2024
STATUS
approved