[go: up one dir, main page]

login
A368883
The number of infinitary divisors of n that are cubefree.
1
1, 2, 2, 2, 2, 4, 2, 3, 2, 4, 2, 4, 2, 4, 4, 1, 2, 4, 2, 4, 4, 4, 2, 6, 2, 4, 3, 4, 2, 8, 2, 2, 4, 4, 4, 4, 2, 4, 4, 6, 2, 8, 2, 4, 4, 4, 2, 2, 2, 4, 4, 4, 2, 6, 4, 6, 4, 4, 2, 8, 2, 4, 4, 2, 4, 8, 2, 4, 4, 8, 2, 6, 2, 4, 4, 4, 4, 8, 2, 2, 1, 4, 2, 8, 4, 4, 4
OFFSET
1,2
COMMENTS
The number of infinitary divisors of n that are squarefree is A055076(n).
FORMULA
Multiplicative with a(p^e) = 2 if e == 1 or 2 (mod 4), 3 if e == 3 (mod 4), and 1 if e == 0 (mod 4).
a(n) >= 1, with equality if and only if n is a 4th power (A000583).
a(n) <= A037445(n), with equality if and only if n is cubefree (A004709).
Dirichlet g.f.: zeta(4*s) * Product_{p prime} (1 + 2/p^s + 2/p^(2*s) + 3/p^(3*s)).
From Vaclav Kotesovec, Jan 09 2024: (Start)
Dirichlet g.f.: zeta(4*s) * zeta(s)^2 * Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s) - 4/p^(4*s) + 3/p^(5*s)).
Let f(s) = Product_{p prime} (1 - 1/p^(2*s) + 1/p^(3*s) - 4/p^(4*s) + 3/p^(5*s)).
Sum_{k=1..n} a(k) ~ f(1) * zeta(4) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1) + 4*zeta'(4)/zeta(4)), where
f(1) = Product_{p prime} (1 - 1/p^2 + 1/p^3 - 4/p^4 + 3/p^5) = 0.5857770602270641007515615375942370402509903724261557972367075945186871...,
f'(1) = f(1) * Sum_{p prime} (2*p^2 - p + 15) * log(p) / (p^4 + p^3 + p - 3) = f(1) * 1.319786264712492218167871116508220489817987315752197198819256094...,
gamma is the Euler-Mascheroni constant A001620, zeta(4) = Pi^4/90 = A013662 and for zeta'(4) see A261506. (End)
MATHEMATICA
f[p_, e_] := Switch[Mod[e, 4], 1, 2, 2, 2, 3, 3, 0, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = vecprod(apply(x -> [1, 2, 2, 3][x%4+1], factor(n)[, 2]));
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Jan 09 2024
STATUS
approved