[go: up one dir, main page]

login
A368711
The maximal exponent in the prime factorization of the exponentially odd numbers (A268335).
8
0, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1
OFFSET
1,7
COMMENTS
Differs from A368472 at n = 1, 154, 610, 707, 762, ... .
LINKS
FORMULA
a(n) = A051903(A268335(n)).
a(n) is odd for n >= 2.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 1 + 2 * Sum_{k>=1} (1 - Product_{p prime} (1 - 1/(p^(2*k-1)*(p^2+p-1)))) = 1.34877064483679975726... .
MATHEMATICA
f[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, If[AllTrue[e, OddQ], Max @@ e, Nothing]]; f[1] = 0; Array[f, 150]
PROG
(PARI) lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = factor(k)[, 2]; if(vecprod(e)%2, print1(vecmax(e), ", "))); }
CROSSREFS
Similar sequences: A368710, A368712, A368713.
Sequence in context: A070670 A372466 A368472 * A049586 A342466 A133721
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Jan 04 2024
STATUS
approved