OFFSET
0,3
COMMENTS
A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(5) = 17 set-systems:
{1} {12} {123} {1234} {12345}
{1}{2} {1}{23} {1}{234} {1}{2345}
{2}{12} {12}{34} {12}{345}
{1}{2}{3} {13}{23} {14}{234}
{3}{123} {23}{123}
{1}{2}{34} {4}{1234}
{1}{3}{23} {1}{2}{345}
{1}{2}{3}{4} {1}{23}{45}
{1}{24}{34}
{1}{4}{234}
{2}{13}{23}
{2}{3}{123}
{3}{13}{23}
{4}{12}{34}
{1}{2}{3}{45}
{1}{2}{4}{34}
{1}{2}{3}{4}{5}
MATHEMATICA
Table[Length[Select[bmp[n], UnsameQ@@#&&And@@UnsameQ@@@#&&Select[Tuples[#], UnsameQ@@#&]!={}&]], {n, 0, 10}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 24 2023
STATUS
approved