%I #12 Dec 03 2023 11:34:30
%S 1,2,6,6,112,21,336,21,24,8064,504,84,2520,40320,1008,504,8064,8064,
%T 504,672,120,399168,39916800,1155,30240,18144,528,241920,26880,36288,
%U 4435200,1814400,480,181440,480,2217600,3991680,528,20736,36288,362880,378,110880,4435200,36960,201600,5040,13860,295680,5702400,4435200,13860,103680,50400,1814400,720
%N a(n) is the denominator of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears in the version of the Eden growth model described in A367671 when n square cells have been added.
%C Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.
%C Terms on the n-th row are (2*n-1)-smooth.
%H <a href="/index/Pol#polyominoes">Index entries for sequences related to polyominoes</a>.
%F A367675(n)/a(n) = (A367671(n)/A367672(n))/A335573(n+1).
%e As an irregular triangle:
%e 1;
%e 2;
%e 6, 6;
%e 112, 21, 336, 21, 24;
%e 8064, 504, 84, 2520, 40320, 1008, 504, 8064, 8064, 504, 672, 120;
%e ...
%Y Cf. A000105, A246521, A335573, A367671, A367672, A367675 (numerators), A367678, A367765.
%K nonn,frac,tabf
%O 1,2
%A _Pontus von Brömssen_, Nov 26 2023