[go: up one dir, main page]

login
A367518
Numerators of even-numbered Maclaurin coefficients of sqrt(tan(x)/x).
2
1, 1, 19, 55, 11813, 2117, 64604977, 263101079, 1768132943, 9606907803497, 158812278992229461, 9112944418860287, 2117852079027536379043, 27841657661565660151, 909416652267282749299777, 26176589384334728915393123, 22901449589921151647801250738173, 514908297269179169530303586629
OFFSET
0,3
COMMENTS
Numerators of Maclaurin coefficients of sqrt(tan(sqrt(x))/x^(1/4).
LINKS
FORMULA
sqrt(tan(x)/x) = Sum_{k=0..oo} a(k)/A367519(k) * x^(2*k).
EXAMPLE
sqrt(tan(x)/x) = 1 + (1/6) * x^2 + (19/360) * x^4 + (55/3024) * x^6 + ...
MAPLE
S:= series(sqrt(tan(x)/x), x, 41):
seq(numer(coeff(S, x, i)), i=0..40, 2);
CROSSREFS
Sequence in context: A126373 A125818 A362298 * A093362 A341176 A251073
KEYWORD
nonn,frac
AUTHOR
Robert Israel, Nov 21 2023
STATUS
approved