OFFSET
3,6
EXAMPLE
Triangle begins:
1
0 1
0 0 2
1 1 1 2
1 0 1 1 3
1 1 1 1 2 3
1 1 1 2 2 2 4
2 2 3 2 3 2 3 4
2 2 3 2 3 3 3 3 5
3 2 4 3 4 4 5 3 4 5
3 3 5 4 4 5 5 5 4 4 6
4 3 6 5 6 5 7 5 7 4 5 6
5 5 7 7 8 7 8 8 7 7 5 5 7
6 5 9 8 10 7 10 9 10 7 9 5 6 7
7 7 10 10 12 11 11 11 12 10 9 9 6 6 8
9 7 13 11 15 12 13 13 15 13 13 9 11 6 7 8
Row n = 9 counts the following strict partitions:
(6,2,1) (5,3,1) (4,3,2) (5,3,1) (6,2,1) (6,2,1) (8,1)
(4,3,2) (4,3,2) (5,3,1) (7,2)
(6,3)
(5,4)
Row n = 13 counts the following strict partitions (A=10, B=11, C=12):
A21 931 841 751 652 751 841 931 A21 A21 C1
7321 7321 832 742 643 7321 742 832 832 931 B2
6421 5431 7321 6421 6421 652 7321 7321 742 841 A3
6421 5431 5431 6421 643 643 652 751 94
5431 5431 5431 6421 85
76
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#, {2}], k]&]], {n, 3, 10}, {k, 3, n}]
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Nov 18 2023
STATUS
approved