[go: up one dir, main page]

login
A366979
Number of divisors of n less than or equal to d(n).
1
1, 2, 1, 2, 1, 3, 1, 3, 2, 2, 1, 5, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 6, 1, 2, 2, 3, 1, 5, 1, 3, 2, 2, 1, 6, 1, 2, 2, 5, 1, 5, 1, 3, 3, 2, 1, 6, 1, 3, 2, 3, 1, 4, 1, 5, 2, 2, 1, 8, 1, 2, 2, 3, 1, 4, 1, 3, 2, 4, 1, 8, 1, 2, 3, 3, 1, 4, 1, 6, 2, 2, 1, 7, 1, 2, 2, 4, 1, 7
OFFSET
1,2
COMMENTS
First differs from A126131 at a(25) = 1.
FORMULA
a(n) = Sum_{d|n, d <= d(n)} 1.
a(n) = 1 + Sum_{d|n} (Sum_{i=2..d(n)} ( sign(floor(i/d)) - sign(floor((i-1)/d)) )), where d(n) is the number of divisors of n (A000005).
EXAMPLE
a(8) = 3; There are 3 divisors of 8 that are <= d(8) = 4. They are: {1,2,4}.
a(25) = 1; 1 is the only divisor of 25 that is <= d(25) = 3.
MATHEMATICA
Table[1 + Sum[Sum[(Sign[Floor[i/k]] - Sign[Floor[(i - 1)/k]]), {i, 2, DivisorSigma[0, n]}] (1 - Ceiling[n/k] + Floor[n/k]), {k, n}], {n, 100}]
PROG
(PARI) a(n) = my(nd=numdiv(n)); sumdiv(n, d, d <= nd); \\ Michel Marcus, Oct 30 2023
CROSSREFS
Sequence in context: A345137 A208478 A274450 * A126131 A343332 A138012
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 30 2023
STATUS
approved