[go: up one dir, main page]

login
A366814
a(n) = Sum_{d|n} (-1)^(n/d-1) * binomial(d+3,4).
4
1, 4, 16, 29, 71, 115, 211, 289, 511, 649, 1002, 1253, 1821, 2174, 3146, 3505, 4846, 5605, 7316, 8099, 10852, 11653, 14951, 16333, 20546, 21935, 27916, 28904, 35961, 38620, 46377, 48113, 59922, 61204, 74096, 77024, 91391, 93959, 113766, 114059, 135752, 140654, 163186
OFFSET
1,2
LINKS
FORMULA
G.f.: -Sum_{k>=1} (-x)^k/(1-x^k)^5 = Sum_{k>=1} binomial(k+3,4) * x^k/(1+x^k).
MATHEMATICA
Table[DivisorSum[n, (-1)^(n/# - 1)*Binomial[# + 3, 4] &], {n, 56}] (* Michael De Vlieger, Oct 25 2023 *)
PROG
(PARI) a(n) = sumdiv(n, d, (-1)^(n/d-1)*binomial(d+3, 4));
CROSSREFS
Partial sums give A366723.
Sequence in context: A364582 A227434 A173019 * A031003 A324784 A046001
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 24 2023
STATUS
approved