[go: up one dir, main page]

login
A366571
a(n) = denominator(Bernoulli(n, x)) / denominator(Bernoulli'(n, x)).
1
1, 2, 6, 1, 30, 1, 42, 1, 10, 1, 66, 1, 2730, 1, 2, 3, 170, 1, 798, 1, 110, 3, 46, 1, 546, 1, 2, 1, 870, 1, 14322, 1, 170, 3, 2, 1, 1919190, 1, 2, 3, 4510, 1, 1806, 1, 46, 15, 94, 1, 1326, 1, 22, 3, 530, 1, 798, 1, 290, 3, 118, 1, 56786730, 1, 2, 3, 34, 5, 64722
OFFSET
0,2
FORMULA
a(n) = A144845(n) / A324370(n).
MAPLE
seq(denom(bernoulli(n, x))/denom(diff(bernoulli(n, x), x)), n = 0..66);
PROG
(PARI) a(n) = lcm(apply(denominator, Vec(bernpol(n))))/lcm(apply(denominator, Vec(deriv(bernpol(n))))); \\ Michel Marcus, Oct 14 2023
CROSSREFS
Cf. A144845/A324370, A366572, A144845/A366168 (2nd derivative).
Sequence in context: A291646 A366152 A366427 * A027642 A249306 A347427
KEYWORD
nonn,frac
AUTHOR
Peter Luschny, Oct 13 2023
STATUS
approved