[go: up one dir, main page]

login
A366391
Numbers k such that A163511(k) is an eleventh power.
4
0, 1024, 2049, 4099, 8199, 16399, 32799, 65599, 131199, 262399, 524799, 1049599, 2097152, 2099199, 4194305, 4196352, 4198399, 8388611, 8392705, 8394752, 8396799, 16777223, 16785411, 16789505, 16791552, 16793599, 33554447, 33570823, 33579011, 33583105, 33585152, 33587199, 67108895, 67141647, 67158023, 67166211, 67170305
OFFSET
1,2
COMMENTS
Equivalently, numbers k for which A332214(k), and also A332817(k) are eleventh powers.
The sequence is defined inductively as:
(a) it contains 0 and 1024,
and
(b) for any nonzero term a(n), (2*a(n)) + 1 and 2048*a(n) are also included as terms.
When iterating n -> 2n+1 mod 2047, starting from 1024 we get 1024, 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, and then cycle starts again from 1024 (see A153893), while on the other hand, x^11 mod 2047 obtains values: 0, 1, 230, 322, 344, 368, 390, 482, 622, 712, 713, 942, 967, 1013, 1034, 1080, 1105, 1334, 1335, 1425, 1565, 1657, 1679, 1703, 1725, 1817, 2046. These sets have no terms in common, therefore there are no eleventh powers in this sequence after the initial 0.
PROG
(PARI)
A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p));
isA366391v(n) = ispower(A163511(n), 11);
(PARI) isA366391(n) = if(n<=1024, !(n%1024), if(n%2, isA366391((n-1)/2), if(n%2048, 0, isA366391(n>>11))));
CROSSREFS
Positions of multiples of 11 in A365805.
Sequence A243071(n^11), n >= 1, sorted into ascending order.
Sequence in context: A221260 A223065 A298607 * A195093 A258734 A195234
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 09 2023
STATUS
approved