[go: up one dir, main page]

login
a(n) = gcd(n, A366275(n)), where A366275 is the Cat's tongue permutation.
9

%I #11 Oct 07 2023 21:39:28

%S 1,1,2,3,4,1,6,1,8,9,2,1,12,1,2,1,16,1,18,1,4,3,2,1,24,25,2,1,4,1,2,1,

%T 32,3,2,5,36,1,2,3,8,1,6,1,4,3,2,1,48,1,50,1,4,1,2,55,8,1,2,1,4,1,2,1,

%U 64,1,6,1,4,3,10,1,72,1,2,15,4,7,6,1,16,3,2,1,12,5,2,3,8,1,6,7,4,3,2,1,96,1,2,1,100

%N a(n) = gcd(n, A366275(n)), where A366275 is the Cat's tongue permutation.

%H Antti Karttunen, <a href="/A366283/b366283.txt">Table of n, a(n) for n = 0..16383</a>

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%F a(n) = gcd(n,A366282(n)) = gcd(A366275(n),A366282(n)).

%F a(n) = n / A366284(n) = A366275(n) / A366285(n).

%o (PARI) A366283(n) = gcd(n,A366275(n)); \\ Uses the program given in A366275.

%Y Cf. A057889, A163511, A366275, A366282, A366284, A366285, A366286.

%Y Differs from related A364255 for the first time at n=25, where a(25) = 25, while A364255(25) = 5.

%K nonn

%O 0,3

%A _Antti Karttunen_, Oct 07 2023