[go: up one dir, main page]

login
A366221
G.f. A(x) satisfies A(x) = 1 + x*(1 + x)^2*A(x)^3.
16
1, 1, 5, 25, 145, 905, 5941, 40433, 282721, 2018897, 14661349, 107945993, 803922289, 6045458905, 45840518933, 350100674785, 2690717983169, 20794719218593, 161502488175557, 1259855507859193, 9867012143508305, 77554946281194793, 611575725258403061
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} binomial(2*k,n-k) * binomial(3*k,k)/(2*k+1).
G.f.: A(x) = 1/B(-x) where B(x) is the g.f. of A366434.
MATHEMATICA
nmax = 22; A[_] = 1;
Do[A[x_] = 1 + x*(1 + x)^2*A[x]^3 + O[x]^(nmax+1) // Normal, {nmax+1}];
CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
PROG
(PARI) a(n) = sum(k=0, n, binomial(2*k, n-k)*binomial(3*k, k)/(2*k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Oct 04 2023
STATUS
approved