OFFSET
1,2
FORMULA
a(n) = [x^n] Product_{k=0..floor(log_2(n))} Product_{j=0..k} (1 + x^binomial(k, j)). - Andrew Howroyd, Oct 28 2023
EXAMPLE
For n = 5 we use the first 3 rows of Pascal's triangle:
1;
1, 1;
1, 2, 1;
There are C(1,1)*C(5,3) = 10 ways to make the sum 2 + 1 + 1 + 1
and C(5,5) = 1 ways to make the sum 1 + 1 + 1 + 1 + 1,
so a(5) = 10 + 1 = 11.
PROG
(PARI) a(n) = polcoef(prod(k=0, logint(n, 2), prod(j=0, k, 1 + x^binomial(k, j) + O(x*x^n))), n) \\ Andrew Howroyd, Oct 28 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Guderian Raborg, Sep 30 2023
EXTENSIONS
Terms a(16) and beyond from Andrew Howroyd, Oct 28 2023
STATUS
approved