[go: up one dir, main page]

login
Expansion of (1/x) * Series_Reversion( x*(1+x-x^2)/(1+x)^5 ).
0

%I #11 Sep 29 2023 10:04:21

%S 1,4,23,155,1143,8932,72682,609348,5227035,45659020,404756300,

%T 3632075109,32928392154,301152242600,2775117150576,25741623112539,

%U 240162703635495,2252187478291088,21217451539791085,200709823787548845,1905712342347978340

%N Expansion of (1/x) * Series_Reversion( x*(1+x-x^2)/(1+x)^5 ).

%F a(n) = (1/(n+1)) * Sum_{k=0..floor(n/2)} binomial(n+k,k) * binomial(4*n-k+4,n-2*k).

%o (PARI) a(n) = sum(k=0, n\2, binomial(n+k, k)*binomial(4*n-k+4, n-2*k))/(n+1);

%Y Cf. A045743, A049125, A279565.

%K nonn

%O 0,2

%A _Seiichi Manyama_, Sep 29 2023