[go: up one dir, main page]

login
A365948
Irregular triangle read by rows: T(n,k) (0 <= k <= n^2) are coefficients of exact wrapping probability for site percolation on an n X n 2D triangular lattice with periodic boundary conditions. This is for the probability that it wraps in both dimensions.
0
0, 1, 0, 0, 2, 4, 1, 0, 0, 0, 3, 27, 72, 78, 36, 9, 1, 0, 0, 0, 0, 4, 80, 568, 2144, 5034, 7456, 6872, 4208, 1812, 560, 120, 16, 1, 0, 0, 0, 0, 0, 5, 175, 2325, 17450, 86475, 307075, 817200, 1660050, 2569025, 3005250, 2681890, 1871800, 1046675, 476050, 176750, 53120, 12650, 2300, 300, 25, 1
OFFSET
1,5
COMMENTS
The wrapping probability function is Sum_{k=0..n^2} T(n,k)*p^k*(1-p)^(n^2-k).
LINKS
Stephan Mertens, Percolation (Gives first 7 rows)
EXAMPLE
Triangle begins:
0, 1,
0, 0, 2, 4, 1,
0, 0, 0, 3, 27, 72, 78, 36, 9, 1,
0, 0, 0, 0, 4, 80, 568, 2144, 5034, 7456, 6872, 4208, 1812, 560, 120, 16, 1,
0, 0, 0, 0, 0, 5, 175, 2325, 17450, 86475, 307075, 817200, 1660050, 2569025, 3005250, 2681890, 1871800, 1046675, 476050, 176750, 53120, 12650, 2300, 300, 25, 1,
...
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
N. J. A. Sloane, Oct 12 2023
STATUS
approved