[go: up one dir, main page]

login
A365776
O.g.f. A(x) satisfies: Sum_{n>=0} (-1)^n * log((1 - 2^n*x)*A(x))^n / n! = 1.
1
1, 2, 6, 56, 2176, 264128, 97403128, 116613183904, 477185203152432, 6888694977614541952, 357723804527747884084384, 67665852938362110551077866496, 47032826381397323139718241444226496, 120930078672642050250114980899028695276544, 1156477264045758740728755778253983148148820652288
OFFSET
0,2
LINKS
EXAMPLE
G.f.: A(x) = 1 + 2*x + 6*x^2 + 56*x^3 + 2176*x^4 + 264128*x^5 + 97403128*x^6 + 116613183904*x^7 + 477185203152432*x^8 + 6888694977614541952*x^9 + ...
where Sum_{n>=0} (-1)^n * log( (1 - 2^n*x)*A(x) )^n / n! = 1.
RELATED SERIES.
log(A(x)) = 2*x + 8*x^2/2 + 140*x^3/3 + 8264*x^4/4 + 1298472*x^5/5 + 581218736*x^6/6 + 814924372320*x^7/7 + 3815614155894752*x^8/8 + ...
log((1-2*x)*A(x)) = 2*x^2 + 44*x^3 + 2062*x^4 + 259688*x^5 + 290609336/3*x^6 + ...
log((1-2^2*x)*A(x))^2/2! = 2*x^2 + 8*x^3 - 128/3*x^4 - 12316/3*x^5 + ...
log((1-2^3*x)*A(x))^3/3! = -36*x^3 - 504*x^4 - 4584*x^5 - 17204/3*x^6 + ...
log((1-2^4*x)*A(x))^4/4! = 4802/3*x^4 + 170128/3*x^5 + 12208448/9*x^6 + ...
log((1-2^5*x)*A(x))^5/5! = -202500*x^5 - 17145000*x^6 - 947709000*x^7 + ...
...
PROG
(PARI) {a(n) = my(A=[1]); for(i=0, n, A=concat(A, 0); A[#A] = Vec(sum(n=0, #A+1, (-1)^n * log( (1 - 2^n*x)*Ser(A) )^n/n! ))[#A] ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
Cf. A306062.
Sequence in context: A167010 A014070 A320287 * A198445 A248377 A326968
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 15 2023
STATUS
approved