[go: up one dir, main page]

login
A365532
a(n) = Sum_{k=0..floor((n-4)/5)} Stirling2(n,5*k+4).
4
0, 0, 0, 0, 1, 10, 65, 350, 1701, 7771, 34150, 146905, 633776, 2892032, 15526876, 109484545, 992589171, 10223409493, 108982611518, 1156117871286, 12062817285396, 123603289559039, 1245986248828926, 12391614409960544, 121996350285087172
OFFSET
0,6
FORMULA
Let A(0)=1, B(0)=0, C(0)=0, D(0)=0 and E(0)=0. Let B(n+1) = Sum_{k=0..n} binomial(n,k)*A(k), C(n+1) = Sum_{k=0..n} binomial(n,k)*B(k), D(n+1) = Sum_{k=0..n} binomial(n,k)*C(k), E(n+1) = Sum_{k=0..n} binomial(n,k)*D(k) and A(n+1) = Sum_{k=0..n} binomial(n,k)*E(k). A365528(n) = A(n), A365529(n) = B(n), A365530(n) = C(n), A365531(n) = D(n) and a(n) = E(n).
G.f.: Sum_{k>=0} x^(5*k+4) / Product_{j=1..5*k+4} (1-j*x).
PROG
(PARI) a(n) = sum(k=0, (n-4)\5, stirling(n, 5*k+4, 2));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 08 2023
STATUS
approved