[go: up one dir, main page]

login
A365374
Numbers k such that squaring each digit and concatenating them forms a palindrome.
1
0, 1, 2, 3, 11, 19, 22, 28, 33, 37, 41, 72, 101, 111, 121, 131, 199, 202, 212, 222, 232, 288, 303, 313, 323, 327, 333, 377, 441, 461, 732, 772, 1001, 1111, 1191, 1221, 1281, 1331, 1371, 1411, 1721, 1919, 1999, 2002, 2112, 2192, 2222, 2282, 2332, 2372, 2412, 2722, 2828, 2888
OFFSET
1,3
COMMENTS
The sequence is infinite since if k is a term then so is 1k1.
LINKS
EXAMPLE
k(6) = 19 becomes 181 as 1^2 = 1 and 9^2 = 81;
k(7) = 22 becomes 44 as 2^2 = 4 and 2^2 = 4;
k(8) = 28 becomes 464 as 2^2 = 4 and 8^2 = 64; etc.
MATHEMATICA
Select[Range[0, 3000], PalindromeQ@FromDigits@Flatten[IntegerDigits/@(IntegerDigits@#^2)]&]
PROG
(Python)
def ok(n): return (s:="".join(str(int(d)**2) for d in str(n))) == s[::-1]
print([k for k in range(3000) if ok(k)]) # Michael S. Branicky, Oct 05 2023
CROSSREFS
Sequence in context: A025101 A025105 A257979 * A095984 A229550 A172258
KEYWORD
base,nonn
AUTHOR
STATUS
approved